Review: Symmetric BNE in First-Price Auction (FPA)
Components
- Strategy profile: S=(S1∗,…,SN∗)
- Bid function: bi=Si∗(θi), where θi∼i.i.d. P
- Y=max{θ2,…,θN} with CDF FY(θ)=[P(θ)]N−1
Equilibrium Strategy
S∗(θi)=E[Y∣Y≤θi]=∫0θiFY(θi)θfY(θ)dθ
Revenue Analysis in FPA
Expected Payment of Bidder 1
Conditional on valuation θ1:
E[Payment∣θ1]=FY(θ1)⋅S∗(θ1)=∫0θ1θfY(θ)dθ
Total Expected Revenue (FPA)
By integrating over all θ1:
E[Revenue]=∫0θmaxFY(θ1)E[Y∣Y≤θ1]fθ(θ1)dθ1=∫0θmaxy[1−Fθ(y)]fY(y)dy
For N symmetric bidders:
E[Revenue]=∫0θmaxy[N(1−Fθ(y))fY(y)]dy
Revenue Equivalence Between SPA and FPA
Claim
Under symmetric BNE in FPA and dominant strategies in SPA:
E[Revenue in SPA]=E[Revenue in FPA]
Proof
Define θ(2): Second-highest valuation among θ1,…,θN
CDF of θ(2):
Pr(θ(2)≤θ)=FθN(θ)+N(1−Fθ(θ))FθN−1(θ)
Differentiate to find PDF:
fθ(2)(θ)=N(1−Fθ(θ))⋅(N−1)FθN−2(θ)fθ(θ)=N(1−Fθ(θ))fY(θ)
Revenue Equivalence:
E[Revenue in SPA]=∫0θmaxθfθ(2)(θ)dθ=E[Revenue in FPA]
Revenue Equivalence Theorem
Statement
Any auction mechanism satisfying:
- i.i.d. valuations
- Symmetric BNE with strictly increasing differentiable strategies
- Zero expected payment for θi=0
- Allocation to highest bidder
yields identical expected revenue.
Proof
Notation
- b^1: Arbitrary bid of bidder 1
- θ^1=S−1(b^1): Implied valuation for bid b^1
Expected Payoff
E[Payoff∣θ1]=θ1FY(θ^1)−p(θ^1)
Optimality Condition
At BNE θ^1=θ1:
dθ^1dE[Payoff]θ^1=θ1=θ1fY(θ1)−p′(θ1)=0
Integrate to Find Payment
p(θ1)=∫0θ1θfY(θ)dθ=FY(θ1)E[Y∣Y≤θ1]
Conclusion
The expected payment depends only on allocation rules and valuation distributions, not on auction format.
Preview: Myerson's Optimal Auction
Setup
- 1 item, N asymmetric bidders
- Private valuations Vi∼fi (non-identical distributions)
Objective
Design a mechanism maximizing seller's expected revenue.